skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abramowitch, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Computational modeling serves an important role in childbirth-related research. Prescribed fetal descent trajectory is a key characteristic in childbirth simulations. Two major types of fully prescribed fetal descent trajectories can be identified in the literature: straight descent trajectories and curve of Carus. The straight descent trajectory has the advantage of being simpler and can serve as a reasonable approximation for relatively small fetal movements during labor, but it cannot be used to simulate the entire childbirth process. The curve of Carus is the well-recognized fetal descent trajectory with physiological significance. However, no detailed procedure to geometrically define the curve of Carus can be found in existing computational studies. This status of curve of Carus simulation in the literature hinders the direct comparison of results across different studies and the advancement of computational techniques built upon previous research. The goals of this study are: (1) propose a universal approach to derive the curve of Carus for the second stage of labor, from the point when the fetal head engages the pelvis to the point when the fetal head is fully delivered; and (2) demonstrate its utility when considering various fetal head sizes. The current study provides a detailed formulation of the curve of Carus, considering geometries of both the mother and the fetus. The maternal geometries were obtained from MRI data, and the fetal head geometries were based on laser scanning of a replica of a real fetal head. 
    more » « less
  2. null (Ed.)
  3. We examine the stretching behavior of rubber–plastic composites composed of a layer of styrene–ethylene/propylene–styrene (SEPS) rubber, bonded to a layer of linear low density polyethylene (LLDPE) plastic. Dog-bone shaped samples of rubber, plastic, and rubber–plastic bilayers with rubber : plastic thickness ratio in the range of 1.2–9 were subjected to uniaxial tension tests. The degree of inhomogeneity of deformation was quantified by digital image correlation analysis of video recordings of these tests. In tension, the SEPS layer showed homogeneous deformation, whereas the LLDPE layer showed necking followed by stable drawing owing to its elastoplastic deformation behavior and post-yield strain hardening. Bilayer laminates showed behavior intermediate between the plastic and the rubber, with the degree of necking and drawing reducing as the rubber : plastic ratio increased. A simple model was developed in which the force in the bilayer was taken as the sum of forces in the plastic and the rubber layers measured independently. By applying a mechanical energy balance to this model, the changes in bilayer necking behavior with rubber thickness could be predicted qualitatively. 
    more » « less